This paper addresses the inverse scattering problem in the domain Omega. The input data, measured outside Omega, involve the waves generated by the interaction of plane waves with various directions and unknown scatterers fully occluded inside Omega. The output of this problem is the spatially dielectric constant of these scatterers. Our approach to solving this problem consists of two primary stages. Initially, we eliminate the unknown dielectric constant from the governing equation, resulting in a system of partial differential equations. Subsequently, we develop the Carleman contraction mapping method to effectively tackle this system. It is noteworthy to highlight this method's robustness. It does not request a precise initial guess of the true solution, and its computational cost is not expensive. Some numerical examples are presented.
翻译:暂无翻译