Unique identification of devices brings new security challenges to privacy issues in intelligent multimedia systems. The device fingerprinting technology extracts fingerprints according to the hardware and software characteristics of the device, which can achieve long-term tracking of the device. The primary goal of device fingerprinting is to accurately and uniquely identify a device, which requires the generated fingerprints to have good stability. However, the fingerprints generated by existing fingerprinting technologies are not stable enough or change frequently, making it impossible to track the target device for a long time. In this paper, we propose a novel DRAM-based fingerprinting technique. The device fingerprint generated by our technique has high stability and can be used to track the device for a long time. We leverage the Rowhammer technique to repeatedly and quickly access a row in DRAM to get bit flips. We then construct a physical fingerprint of the device based on the locations of the collected bit flips. The evaluation results of the uniqueness and reliability of the physical fingerprint show that it can be used to distinguish devices with the same hardware and software configuration. The experimental results of device identification in laboratory settings show that our proposed technique can accurately identify the target device by establishing a fingerprint database for device matching. Even if the device modifies software-level parameters such as MAC address, IP address, or even reinstalls the operating system, we can accurately identify the target device. This demonstrates that our proposed fingerprinting technique can generate stable fingerprints that are not affected by software layer parameters, enabling the tracking of target devices for more than five months.


翻译:在智能多媒体系统中,设备指纹技术根据设备硬件和软件特性提取指纹,可以对设备进行长期跟踪。设备指纹的首要目标是准确和独特地识别一个设备,这要求生成的指纹具有良好的稳定性。然而,现有指纹技术产生的指纹不够稳定或经常改变,因此无法长期跟踪目标装置。在这个文件中,我们提议了一个基于DRAM的新型指纹鉴别技术。我们技术产生的设备指纹根据设备硬件和软件特性的硬件和软件特性提取指纹,根据设备的硬件和功能特性提取指纹,可以长期跟踪设备。根据设备硬件和软件特性提取指纹,可以长期跟踪设备。我们利用Rowhammer技术,可以反复和快速访问DRAM的一行,以获得点翻。我们随后根据所收集的点指纹的位置对设备进行物理指纹鉴别;现有指纹技术的独特性和可靠性的评估结果表明,可以用来识别与硬件和软件配置相同的设备。实验室环境中的实验性设备鉴别结果表明,我们拟议的技术可以准确地识别目标装置,甚至无法长期跟踪设备。我们利用Rowhammer技术,可以建立一个指纹追踪目标指标级数据库,以便建立更精确地确定目标定位,而能够核对。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
13+阅读 · 2022年8月16日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员