Desulfovibrio alaskensis G20 (DA-G20) is utilized as a model for sulfate-reducing bacteria (SRB) that are associated with corrosion issues caused by microorganisms. SRB-based biofilms are thought to be responsible for the billion-dollar-per-year bio-corrosion of metal infrastructure. Understanding the extraction of the bacterial cells' shape and size properties in the SRB-biofilm at different growth stages will assist with the design of anti-corrosion techniques. However, numerous issues affect current approaches, including time-consuming geometric property extraction, low efficiency, and high error rates. This paper proposes BiofilScanner, a Yolact-based deep learning method integrated with invariant moments to address these problems. Our approach efficiently detects and segments bacterial cells in an SRB image while simultaneously invariant moments measure the geometric characteristics of the segmented cells with low errors. The numerical experiments of the proposed method demonstrate that the BiofilmScanner is 2.1x and 6.8x faster than our earlier Mask-RCNN and DLv3+ methods for detecting, segmenting, and measuring the geometric properties of the cell. Furthermore, the BiofilmScanner achieved an F1-score of 85.28% while Mask-RCNN and DLv3+ obtained F1-scores of 77.67% and 75.18%, respectively.
翻译:DA-G20(DA-G20)被用作与微生物造成的腐蚀问题相关的减少硫酸盐细菌(SRB)的模型。基于SRB的生物薄膜被认为是金属基础设施每年生物腐蚀10亿美元(生物腐蚀)的原因。了解在SRB-生物胶片不同生长阶段提取细菌细胞的形状和大小特性将有助于设计抗腐蚀技术。然而,许多问题影响着目前的方法,包括耗时的几何属性提取、低效率和高误差率。本文提出BiofilScanner,一种基于Yolact的深层学习方法,结合不变化的瞬间,以解决这些问题。我们的方法在SRB图像中有效地探测和分层细菌细胞的形状和大小特性,同时在变化瞬间中测量分解细胞的几部分特征,但误差较小。拟议方法的数值实验表明,BiofilmScanner比我们早先的Masy-RCNNM和DL3-RBS-CFCR3和DFS-CFCRC-RCRM 的分段段段测量方法, 和FCRC-RC-RC-RC-RD-RC-RC-RD-RD-R-RQ-R-R-RM-RM_BS-C-C-C-C-C-RM-C-R-R-R-C-C-RM-C-C-C-C-C-C-R-C-C-R-R-R-C-C-C-C-C-C-BS-C-C-R-R-R-C-C-C-C-C-C-C-R-R-R-C-C-C-C-C-C-C-C-C-C-C-C-C-C-R-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C