Learning faithful graph representations as sets of vertex embeddings has become a fundamental intermediary step in a wide range of machine learning applications. The quality of the embeddings is usually determined by how well the geometry of the target space matches the structure of the data. In this work we learn continuous representations of graphs in spaces of symmetric matrices over C. These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces, and are amenable to analysis and explicit computations. We implement an efficient method to learn embeddings and compute distances, and develop the tools to operate with such spaces. The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features. On various datasets with very diverse structural properties and reconstruction measures our model ties the results of competitive baselines for geometrically pure graphs and outperforms them for graphs with mixed geometric features, showcasing the versatility of our approach.
翻译:在一系列广泛的机器学习应用程序中,嵌入质量通常取决于目标空间的几何与数据结构的匹配程度。在这项工作中,我们学习了对称矩阵空间中图表的连续表达方式。这些空格提供了丰富的几何方法,既可以同时接受双曲和欧几里德子空间,又可以进行分析和明确的计算。我们采用了一种有效的方法来学习嵌入和计算距离,并开发使用这些空间的工具。拟议的模型能够自动地适应非常不同的安排,而无需对图形特征作任何优先估计。关于结构特性非常多样化的各种数据集,并测量了我们的模型将具有不同结构特性的图形的竞争性基线结果联系起来,并超越了具有混合几何特征的图形的竞争性基线结果,展示了我们方法的多功能。