Dynamic multilayer networks frequently represent the structure of multiple co-evolving relations; however, statistical models are not well-developed for this prevalent network type. Here, we propose a new latent space model for dynamic multilayer networks. The key feature of our model is its ability to identify common time-varying structures shared by all layers while also accounting for layer-wise variation and degree heterogeneity. We establish the identifiability of the model's parameters and develop a structured mean-field variational inference approach to estimate the model's posterior, which scales to networks previously intractable to dynamic latent space models. We demonstrate the estimation procedure's accuracy and scalability on simulated networks. We apply the model to two real-world problems: discerning regional conflicts in a data set of international relations and quantifying infectious disease spread throughout a school based on the student's daily contact patterns.
翻译:动态多层网络经常代表多种共同演变关系的结构; 然而, 统计模型对于这种普遍的网络类型并没有很好地开发。 在这里, 我们为动态多层网络提出一个新的潜在空间模型。 我们模型的主要特征是它能够确定所有层次共享的共同时间分配结构, 同时也考虑到多层差异和程度差异。 我们确定模型参数的可识别性, 并制定一个结构化的中位差异推论方法, 以估计模型的后端, 该后端是以前对动态潜在空间模型难以控制的网络。 我们展示了模拟网络的估计程序的准确性和可扩缩性。 我们将该模型应用于两个现实世界的问题: 在一套国际关系数据中辨别区域冲突, 并根据学生的日常接触模式量化整个学校的传染性疾病。