In many multi-agent spatiotemporal systems, the agents are under the influence of shared, unobserved variables (e.g., the play a team is executing in a game of basketball). As a result, the trajectories of the agents are often statistically dependent at any given time step; however, almost universally, multi-agent models implicitly assume the agents' trajectories are statistically independent at each time step. In this paper, we introduce baller2vec++, a multi-entity Transformer that can effectively model coordinated agents. Specifically, baller2vec++ applies a specially designed self-attention mask to a mixture of location and "look-ahead" trajectory sequences to learn the distributions of statistically dependent agent trajectories. We show that, unlike baller2vec (baller2vec++'s predecessor), baller2vec++ can learn to emulate the behavior of perfectly coordinated agents in a simulated toy dataset. Additionally, when modeling the trajectories of professional basketball players, baller2vec++ outperforms baller2vec by a wide margin.
翻译:在许多多试剂时空系统中, 代理器受到共享且不受观察的变量的影响( 例如, 一个团队在篮球游戏中执行的游戏 ) 。 结果, 代理器的轨迹在任何特定时间步骤中通常在统计上取决于任何特定时间步骤; 但是, 几乎普遍地, 多试样模型暗含地假定, 代理器的轨迹在统计上每个步骤都是独立的。 在本文中, 我们引入一个能够有效模拟协调代理器的多实体变异器。 具体地说, Baller2vec++ 将一个专门设计的自我注意遮罩应用到一个位置和“ 外观” 轨迹序列来学习统计依赖性代理器轨迹的分布 。 我们表明, 与 Baller2vec ( Baller2vec++' 的前身) 不同的是, Baller2vec++ 可以学习在模拟的玩具数据集中模仿完全协调的代理器的行为。 此外, 当模拟专业篮球员的轨迹时, Baller2vec+ 超越了球盘的模。