Detecting performance issues and identifying their root causes in the runtime is a challenging task. Typically, developers use methods such as logging and tracing to identify bottlenecks. These solutions are, however, not ideal as they are time-consuming and require manual effort. In this paper, we propose a method to automate the task of detecting latency outliers using system-level traces and then comparing them to identify the root cause(s). Our method makes use of dependency graphs to show internal interactions between threads and system resources. With these graphs, one can pinpoint where performance issues occur. However, a single trace can be composed of a large number of requests, each generating one graph. To automate the task of identifying outliers within the dataset, we use machine learning density-based models and statistical calculations such as -score. Our evaluation shows an accuracy greater than 97 % on outlier detection, making them appropriate for in-production servers and industry-level use cases.


翻译:在运行时检测性能问题并确定其根源是一项艰巨的任务。 开发者通常使用诸如记录和追踪等方法来找出瓶颈。 然而,这些解决方案并不理想, 因为它们耗时且需要人工操作。 在本文件中, 我们建议了一种方法, 将使用系统级的痕迹来探测潜伏离线的任务自动化, 然后比较它们以找出根源。 我们的方法是使用依赖图来显示线条和系统资源之间的内部互动。 通过这些图表, 人们可以确定出现性能问题的地方。 但是, 单个追踪可以由大量请求组成, 每一个都生成一个图形。 要在数据集内识别外部点的任务自动化, 我们使用机器学习基于密度的模型和统计计算方法, 如 - 集合点。 我们的评估显示外点检测的精确度超过97%, 使其适合生产中的服务器和行业级使用案例 。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2020年12月17日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员