This paper aims to automatically detect COVID-19 patients by analysing the acoustic information embedded in coughs. COVID-19 affects the respiratory system, and, consequently, respiratory-related signals have the potential to contain salient information for the task at hand. We focus on analysing the spectrogram representations of coughing samples with the aim to investigate whether COVID-19 alters the frequency content of these signals. Furthermore, this work also assesses the impact of gender in the automatic detection of COVID-19. To extract deep learnt representations of the spectrograms, we compare the performance of a cough-specific, and a Resnet18 pre-trained Convolutional Neural Network (CNN). Additionally, our approach explores the use of contextual attention, so the model can learn to highlight the most relevant deep learnt features extracted by the CNN. We conduct our experiments on the dataset released for the Cough Sound Track of the DiCOVA 2021 Challenge. The best performance on the test set is obtained using the Resnet18 pre-trained CNN with contextual attention, which scored an Area Under the Curve (AUC) of 70.91 at 80% sensitivity.


翻译:本文的目的是通过分析咳嗽中所含的声学信息自动检测COVID-19病人。COVID-19影响呼吸系统,因此,呼吸相关信号有可能包含当前任务所需的显著信息。我们侧重于分析咳嗽样本的光谱显示,以调查COVID-19是否改变这些信号的频率内容。此外,这项工作还评估了性别在自动检测COVID-19方面的影响。为了提取对光谱图的深刻了解,我们比较了特定咳嗽和Resnet18预先培训神经网络的性能。此外,我们的方法探索了对背景的注意,以便模型可以学习突出CNN所提取的最相关的深层了解的特征。我们在DiCOVA 2021挑战的Cough音轨上进行实验。测试集的最佳性能是利用Resnet18预先培训的CNN和背景关注,后者在70.91%至80%敏感度的Curve(AUC)下区域。

0
下载
关闭预览

相关内容

【WWW2021】合作记忆网络的个性化任务导向对话系统
专知会员服务
14+阅读 · 2021年2月17日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
139+阅读 · 2019年11月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
9+阅读 · 2021年6月16日
Arxiv
20+阅读 · 2020年6月8日
Graph-Based Recommendation System
Arxiv
4+阅读 · 2018年7月31日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员