We proposed a new generalized model based on the classical Hawkes process with environmental multipliers, which is called an environmentally-adaptive Hawkes (EAH) model. Compared to the classical self-exciting Hawkes process, the EAH model exhibits more flexibility in a macro environmentally temporal sense, and can model more complex processes by using dynamic branching matrix. We demonstrate the well-definedness of this EAH model. A more specified version of this new model is applied to model COVID-19 pandemic data through an efficient EM-like algorithm. Consequently, the proposed model consistently outperforms the classical Hawkes process.


翻译:我们提出了一个基于传统霍克斯进程和环境乘数的新型通用模型,称为适应环境的霍克斯(EAH)模型。与传统的自我激发霍克斯(Hawks)模型相比,EAH模型在宏观环境时间意义上表现出更大的灵活性,并且可以通过动态分支矩阵来模拟更复杂的过程。我们展示了这种EAH模型的清晰定义。这一新模型的更具体版本通过有效的EM类算法适用于模型COVID-19流行病数据。因此,拟议的模型始终优于传统的霍克斯进程。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【斯坦福CS224N硬核课】 问答系统,陈丹琦讲解,79页ppt
专知会员服务
73+阅读 · 2021年2月23日
专知会员服务
57+阅读 · 2021年1月26日
【柳叶刀】人工智能在COVID-19药物再利用中的应用
专知会员服务
25+阅读 · 2020年11月25日
专知会员服务
38+阅读 · 2020年11月24日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员