Data collected from the real world tends to be biased, unbalanced, and at risk of exposing sensitive and private information. This reality has given rise to the idea of creating synthetic datasets to alleviate risk, bias, harm, and privacy concerns inherent in the real data. This concept relies on Generative AI models to produce unbiased, privacy-preserving synthetic data while being true to the real data. In this new paradigm, how can we tell if this approach delivers on its promises? We present an auditing framework that offers a holistic assessment of synthetic datasets and AI models trained on them, centered around bias and discrimination prevention, fidelity to the real data, utility, robustness, and privacy preservation. We showcase our framework by auditing multiple generative models on diverse use cases, including education, healthcare, banking, human resources, and across different modalities, from tabular, to time-series, to natural language. Our use cases demonstrate the importance of a holistic assessment in order to ensure compliance with socio-technical safeguards that regulators and policymakers are increasingly enforcing. For this purpose, we introduce the trust index that ranks multiple synthetic datasets based on their prescribed safeguards and their desired trade-offs. Moreover, we devise a trust-index-driven model selection and cross-validation procedure via auditing in the training loop that we showcase on a class of transformer models that we dub TrustFormers, across different modalities. This trust-driven model selection allows for controllable trust trade-offs in the resulting synthetic data. We instrument our auditing framework with workflows that connect different stakeholders from model development to audit and certification via a synthetic data auditing report.


翻译:摘要:从现实世界收集的数据倾向于带有偏见,不平衡,并且存在泄露敏感和私人信息的风险。这一现实催生了创造合成数据集的想法,以减轻在真实数据中固有的风险、偏见、伤害和隐私问题。这个概念依赖于生成式AI模型来生成既真实又健全的、隐私保护的合成数据。在这种新范式中,我们如何确定这种方法是否履行了承诺?我们提出了一个审计框架,围绕防止偏见和歧视、忠实于真实数据、效用、鲁棒性和隐私保护展开全面评估合成数据集和训练其上的AI模型。我们通过审计多个生成模型在不同应用场景下进行展示,包括教育、医疗、银行、人力资源和从表格到时序到自然语言的不同模态。我们的应用案例展示了全面评估的重要性,以确保符合监管机构和政策制定者越来越多地实施的社会技术保障。为此,我们引入了信任指数,根据其规定的安全保障和期望的权衡,对多个合成数据集进行排名。此外,我们通过在训练循环中进行审计,开发了一个基于信任指数驱动的模型选择和交叉验证过程,展示了在不同模态下的一类称为信任变形器(TrustFormers)的转换模型。这种信任驱动的模型选择允许对生成的合成数据进行可控制的信任权衡。我们通过连接从模型开发到审计和认证的不同利益相关者的工作流,为我们的审计框架补充工具,形成一个合成数据审计报告。

0
下载
关闭预览

相关内容

《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
隐私沙盒: 开发者预览版 5 已经发布!
谷歌开发者
0+阅读 · 2022年10月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月7日
Arxiv
0+阅读 · 2023年6月2日
Advances and Open Problems in Federated Learning
Arxiv
17+阅读 · 2019年12月10日
VIP会员
相关资讯
隐私沙盒: 开发者预览版 5 已经发布!
谷歌开发者
0+阅读 · 2022年10月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员