The predictive power of Convolutional Neural Networks (CNNs) has been an integral factor for emerging latency-sensitive applications, such as autonomous drones and vehicles. Such systems employ multiple CNNs, each one trained for a particular task. The efficient mapping of multiple CNNs on a single FPGA device is a challenging task as the allocation of compute resources and external memory bandwidth needs to be optimised at design time. This paper proposes f-CNN$^{\text{x}}$, an automated toolflow for the optimised mapping of multiple CNNs on FPGAs, comprising a novel multi-CNN hardware architecture together with an automated design space exploration method that considers the user-specified performance requirements for each model to allocate compute resources and generate a synthesisable accelerator. Moreover, f-CNN$^{\text{x}}$ employs a novel scheduling algorithm that alleviates the limitations of the memory bandwidth contention between CNNs and sustains the high utilisation of the architecture. Experimental evaluation shows that f-CNN$^{\text{x}}$'s designs outperform contention-unaware FPGA mappings by up to 50% and deliver up to 6.8x higher performance-per-Watt over highly optimised GPU designs for multi-CNN systems.


翻译:革命神经网络(CNNs)的预测力是新兴隐性敏感应用(如自主无人驾驶飞机和车辆)的一个不可或缺的因素。 这种系统使用多个CNN, 每一个都经过特定任务培训。 在单一的FPGA设备上对多个CNN进行高效绘图是一项具有挑战性的任务,因为计算资源和外部记忆带宽的分配需要在设计时加以优化。 本文提议在FPGAs上对多个CNN进行优化绘图的自动工具流f- CN$ text{x ⁇ $, 包括一个新型的多CNN硬件结构,加上一个自动化设计空间探索方法,该方法考虑到每个模型的用户指定性能要求,以分配计算资源并生成一个可合成的加速器。 此外, f- CN${text{x$x$在设计时需要优化计算资源和外部记忆带宽度带宽度带宽度的配置。 本文提议在FPG- PA系统上保持高利用率。 实验性能评估显示,f-CN$N$NN$NNN$硬件设计超越高端的GFPA系统, 将GPAFAS- 2012- profrofard- proformadestrax

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
55+阅读 · 2021年5月10日
专知会员服务
114+阅读 · 2020年8月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】基于CNN特征的SeqSLAM闭环实时性检测
泡泡机器人SLAM
10+阅读 · 2018年4月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年7月29日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】基于CNN特征的SeqSLAM闭环实时性检测
泡泡机器人SLAM
10+阅读 · 2018年4月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员