We propose {\tt fnets}, a methodology for network estimation and forecasting of high-dimensional time series exhibiting strong serial- and cross-sectional correlations. We operate under a factor-adjusted vector autoregressive (VAR) model where, after controlling for {\it common} factors accounting for pervasive co-movements of the variables, the remaining {\it idiosyncratic} dependence between the variables is modelled by a sparse VAR process. Network estimation of {\tt fnets} consists of three steps: (i) factor-adjustment via dynamic principal component analysis, (ii) estimation of the parameters of the latent VAR process by means of $\ell_1$-regularised Yule-Walker estimators, and (iii) estimation of partial correlation and long-run partial correlation matrices. In doing so, we learn three networks underpinning the latent VAR process, namely a directed network representing the Granger causal linkages between the variables, an undirected one embedding their contemporaneous relationships and finally, an undirected network that summarises both lead-lag and contemporaneous linkages. In addition, {\tt fnets} provides a suite of methods for separately forecasting the factor-driven and the VAR processes. Under general conditions permitting heavy tails and weak factors, we derive the consistency of {\tt fnets} in both network estimation and forecasting. Simulation studies and real data applications confirm the good performance of {\tt fnets}.
翻译:我们提议使用高维时间序列的网络估计和预测方法,以显示强烈的序列和跨部门关联。我们根据一个因数调整矢量自动递增模型(VAR)运作,该模型在控制了 {it common} 因素后,对变量的普遍存在共动作用进行了控制,但变量之间尚存的 prit discensistic} 依赖以稀疏的 VAR 进程为模型。 对 { t fnet} 网络估计由三个步骤组成:(一) 通过动态主要组成部分分析来调整系数,(二) 以$/ell_1美元定期的Yule-Walker估计器(VAR)模型来估计潜伏VAR进程的参数,以及(三)部分关联和长期部分关联基基矩阵的估计。在这样做时,我们了解到三个支撑潜在VAR进程的基础网络的网络,即代表变量之间Granger因果关系的定向网络,一个不直接嵌入的同步关系,以及最后,一个不定向的网络,一个将领导-laget 和正时序 和正时时序的精确预测因素进行对比。