Multi-object tracking in sports scenes plays a critical role in gathering players statistics, supporting further analysis, such as automatic tactical analysis. Yet existing MOT benchmarks cast little attention on the domain, limiting its development. In this work, we present a new large-scale multi-object tracking dataset in diverse sports scenes, coined as \emph{SportsMOT}, where all players on the court are supposed to be tracked. It consists of 240 video sequences, over 150K frames (almost 15\times MOT17) and over 1.6M bounding boxes (3\times MOT17) collected from 3 sports categories, including basketball, volleyball and football. Our dataset is characterized with two key properties: 1) fast and variable-speed motion and 2) similar yet distinguishable appearance. We expect SportsMOT to encourage the MOT trackers to promote in both motion-based association and appearance-based association. We benchmark several state-of-the-art trackers and reveal the key challenge of SportsMOT lies in object association. To alleviate the issue, we further propose a new multi-object tracking framework, termed as \emph{MixSort}, introducing a MixFormer-like structure as an auxiliary association model to prevailing tracking-by-detection trackers. By integrating the customized appearance-based association with the original motion-based association, MixSort achieves state-of-the-art performance on SportsMOT and MOT17. Based on MixSort, we give an in-depth analysis and provide some profound insights into SportsMOT. The dataset and code will be available at https://deeperaction.github.io/datasets/sportsmot.html.
翻译:体育场景中的多目标追踪对于收集运动员统计数据、支持进一步的分析(如自动化战术分析)起着至关重要的作用。然而,现有的多目标追踪数据集很少涉及此领域,限制了其发展。在本文中,我们提出了一个新的大型多目标追踪数据集,称为SportsMOT,其中所有场上运动员都应被跟踪。该数据集包含240个视频序列,超过150K个帧(几乎是15倍MOT17)和超过1.6M个边界框(3倍MOT17),涵盖3个体育项目,包括篮球、排球和足球。我们的数据集具有两个关键特点:1)快速和变速的运动,2)相似但可区分的外观。我们期望SportsMOT能够促进MOT追踪器在基于运动的关联和基于外观的关联方面的发展。我们评估了几种最先进的追踪器,并揭示了SportsMOT的关键挑战在于对象关联。为了缓解这个问题,我们进一步提出了一个新的多目标追踪框架,称为MixSort,引入了类似于MixFormer的结构作为辅助关联模型,用于常规的检测追踪器。通过将定制的基于外观的关联与原始的基于运动的关联结合起来,MixSort在SportsMOT和MOT17上实现了最先进的性能。基于MixSort,我们进行了深入的分析,并提供了一些深刻的洞察。该数据集和代码将可在https://deeperaction.github.io/datasets/sportsmot.html上获得。