Recent work has shown that the training of a one-hidden-layer, scalar-output fully-connected ReLU neural network can be reformulated as a finite-dimensional convex program. Unfortunately, the scale of such a convex program grows exponentially in data size. In this work, we prove that a stochastic procedure with a linear complexity well approximates the exact formulation. Moreover, we derive a convex optimization approach to efficiently solve the "adversarial training" problem, which trains neural networks that are robust to adversarial input perturbations. Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments that the proposed method achieves a noticeably better adversarial robustness and performance than the existing methods.
翻译:最近的工作表明,对一个隐藏层、 scalar- utput 完全连接的 ReLU 神经网络的培训可以重塑为一个有限维度的剖面程序。 不幸的是, 这样一个剖面程序的规模在数据大小上成倍增长。 在这项工作中, 我们证明一个具有线性复杂度的随机程序与确切的表述相近。 此外, 我们得出了一种连接优化方法, 以有效解决“ 对抗性培训”问题, 即训练神经网络, 使其对对抗性输入的扰动非常有力。 我们的方法可以适用于二元分类和回归, 并且提供了替代当前对抗性培训方法的替代方法, 如快速增速信号法和预测梯度源。 我们通过实验证明, 所提议的方法比现有方法的对抗性强得多。