Several recent studies attempt to address the biological implausibility of the well-known backpropagation (BP) method. While promising methods such as feedback alignment, direct feedback alignment, and their variants like sign-concordant feedback alignment tackle BP's weight transport problem, their validity remains controversial owing to a set of other unsolved issues. In this work, we answer the question of whether it is possible to realize random backpropagation solely based on mechanisms observed in neuroscience. We propose a hypothetical framework consisting of a new microcircuit architecture and its supporting Hebbian learning rules. Comprising three types of cells and two types of synaptic connectivity, the proposed microcircuit architecture computes and propagates error signals through local feedback connections and supports the training of multi-layered spiking neural networks with a globally defined spiking error function. We employ the Hebbian rule operating in local compartments to update synaptic weights and achieve supervised learning in a biologically plausible manner. Finally, we interpret the proposed framework from an optimization point of view and show its equivalence to sign-concordant feedback alignment. The proposed framework is benchmarked on several datasets including MNIST and CIFAR10, demonstrating promising BP-comparable accuracy.
翻译:最近的一些研究试图解决众所周知的回溯性分析(BP)方法的生物不可信的问题。虽然一些最近的研究试图解决众所周知的回溯性分析(BP)方法的生物不可信的问题。一些最近的研究试图解决众所周知的回溯性分析(BP)方法的生物不可信的问题。一些有希望的方法,例如反馈调整、直接反馈调整及其变方,例如:反馈调整、直接反馈调整等,解决了BP重量迁移问题,但由于一系列其他尚未解决的问题,这些方法的有效性仍然有争议。在这项工作中,我们回答这样一个问题,即是否可能仅仅根据在神经科学中观测到的机制实现随机回溯性分析。我们提出了一个假设框架,包括一个新的微电路结构及其支持的Hebbbian学习规则。我们从一个最优化的角度对拟议框架进行解释,并显示其与签名和回馈的连接的等同性。拟议的微电路结构框架以全球定义的振动性误差功能为基础,包括有希望的CRFAR框架。