Requirement Engineering (RE) is the foundation of successful software development. In RE, the goal is to ensure that implemented systems satisfy stakeholder needs through rigorous requirements elicitation, validation, and evaluation processes. Despite its critical role, RE continues to face persistent challenges, such as ambiguity, conflicting stakeholder needs, and the complexity of managing evolving requirements. A common view is that Artificial Intelligence (AI) has the potential to streamline the RE process, resulting in improved efficiency, accuracy, and management actions. However, using AI also introduces new concerns, such as ethical issues, biases, and lack of transparency. This paper explores how AI can enhance traditional RE practices by automating labor-intensive tasks, supporting requirement prioritization, and facilitating collaboration between stakeholders and AI systems. The paper also describes the opportunities and challenges that AI brings to RE. In particular, the vision calls for ethical practices in AI, along with a much-enhanced collaboration between academia and industry professionals. The focus should be on creating not only powerful but also trustworthy and practical AI solutions ready to adapt to the fast-paced world of software development.


翻译:需求工程(RE)是成功软件开发的基石。在RE中,其目标是通过严格的需求获取、验证和评估流程,确保所实现的系统满足利益相关者的需求。尽管RE具有关键作用,但它仍持续面临诸多挑战,例如需求表述的模糊性、利益相关者需求之间的冲突,以及管理不断演变的需求的复杂性。一种普遍观点认为,人工智能(AI)有潜力优化RE流程,从而提高效率、准确性并改进管理行为。然而,使用AI也带来了新的关切,例如伦理问题、偏见以及缺乏透明度。本文探讨了AI如何通过自动化劳动密集型任务、支持需求优先级排序以及促进利益相关者与AI系统之间的协作,来增强传统的RE实践。本文还阐述了AI为RE带来的机遇与挑战。特别地,该愿景呼吁在AI应用中遵循伦理实践,并大力加强学术界与行业专业人士之间的协作。重点应不仅在于创建强大的AI解决方案,更在于构建可信赖且实用的AI方案,使其能够适应快速发展的软件开发世界。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2024年3月11日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员