Language models built using semi-supervised machine learning on large corpora of natural language have very quickly enveloped the fields of natural language generation and understanding. In this paper we apply a zero-shot approach independently developed by a number of researchers now gaining recognition as a significant alternative to fine-tuning for evaluation on common sense tasks. A language model with relatively few parameters and training steps compared to a more recent language model (T5) can outperform it on a recent large data set (TimeDial), while displaying robustness in its performance across a similar class of language tasks. Surprisingly, this result is achieved by using a hyperparameter-free zero-shot method with the smaller model, compared to fine-tuning to the larger model. We argue that robustness of the smaller model ought to be understood in terms of compositionality, in a sense that we draw from recent literature on a class of similar models. We identify a practical cost for our method and model: high GPU-time for natural language evaluation. The zero-shot measurement technique that produces remarkable stability, both for ALBERT and other BERT variants, is an application of pseudo-log-likelihoods to masked language models for the relative measurement of probability for substitution alternatives in forced choice language tasks such as the Winograd Schema Challenge, Winogrande, and others. One contribution of this paper is to bring together a number of similar, but independent strands of research. We produce some absolute state-of-the-art results for common sense reasoning in binary choice tasks, performing better than any published result in the literature, including fine-tuned efforts. We show a remarkable consistency of the model's performance under adversarial settings, which we argue is best explained by the model's compositionality of representations.


翻译:使用半监督机器学习大型自然语言团体的语言模型所建语言模型,在自然语言生成和理解方面迅速覆盖了自然语言生成和理解的领域。 在本文中,我们采用由一些研究人员独立开发的零射法,作为改进常识任务评估的重要替代方法。 与较新的语言模型(T5)相比,参数和培训步骤相对较少的语文模型可以超越最近的大型数据集(TimeDial),同时显示其在类似语言背景中的表现的稳健性。 令人惊讶的是,通过使用较小型模型的超光度零射法和较小型模型来实现这一结果。 我们认为,较小型模型的稳性应被理解为对常识任务的一种精度,我们从最近的一些文献中提取了类似的参数和培训步骤。 我们为方法和模型确定了一种实际成本: 高GPU- 时间用于自然语言评估。 零光光度测量技术,为ALBERT和其他BER变量提供了显著的稳定性, 与更小模型相比,这是与较小型模型相比的零射速的零射速度方法方法,这是我们用来在模拟的模型中 一种模拟的模拟的模拟的模型的模型的模型中, 一种模拟的模拟的模拟的模拟的模拟的模型的模型的模型的模型的模型的模型的模型的模拟, 展示了一种模拟的模拟的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模拟的模拟的模拟的模拟的模型的模型的模型的模拟的模拟, 展示的模拟的模拟的模型的模型的模型的模拟的模拟的模拟的模型的模型的模型的模型的模型的精确性结果, 展示了一种模拟的模型的模型的模型的模型的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模型的模型的模型, 展示, 展示, 展示, 展示了我们的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员