Multivariate spatio-temporal data refers to multiple measurements taken across space and time. For many analyses, spatial and time components can be separately studied: for example, to explore the temporal trend of one variable for a single spatial location, or to model the spatial distribution of one variable at a given time. However for some studies, it is important to analyse different aspects of the spatio-temporal data simultaneouly, like for instance, temporal trends of multiple variables across locations. In order to facilitate the study of different portions or combinations of spatio-temporal data, we introduce a new data structure, cubble, with a suite of functions enabling easy slicing and dicing on the different components spatio-temporal components. The proposed cubble structure ensures that all the components of the data are easy to access and manipulate while providing flexibility for data analysis. In addition, cubble facilitates visual and numerical explorations of the data while easing data wrangling and modelling. The cubble structure and the functions provided in the cubble R package equip users with the capability to handle hierarchical spatial and temporal structures. The cubble structure and the tools implemented in the package are illustrated with different examples of Australian climate data.
翻译:多变的时空数据指跨时空的多种测量。对于许多分析,可以分别研究空间和时间组成部分:例如,为单个空间位置探索一个变量的时间趋势,或者在特定时间模拟一个变量的空间分布。然而,对于一些研究来说,重要的是分析空间-时空数据的不同方面,例如跨地点多个变量的时间趋势。为了便利对空间-时空数据的不同部分或组合的研究,我们可以采用一个新的数据结构,即软盘和时空数据,我们采用一套功能,使一个变量的单一空间位置能够容易剪切换和刻贴在不同组成部分的时空分布。提议的小块结构可以确保数据的所有组成部分易于获取和操作,同时为数据分析提供灵活性。此外,小块便于对数据进行视觉和数字的探索,同时简化数据的旋转和建模。小块R软件包中提供的新数据结构及功能使用户有能力处理不同空间和时空结构的系统结构。在澳大利亚应用了不同的空间和时空模型模型结构中,软体和软体结构使用户具备了能力。