Knowledge tracing (KT) is a fundamental task in educational data mining that mainly focuses on students' dynamic cognitive states of skills. The question-answering process of students can be regarded as a thinking process that considers the following two problems. One problem is which skills are needed to answer the question, and the other is how to use these skills in order. If a student wants to answer a question correctly, the student should not only master the set of skills involved in the question but also think and obtain the associative path on the skills graph. The nodes in the associative path refer to the skills needed and the path shows the order of using them. The associative path is referred to as the skill mode. Thus, obtaining the skill modes is the key to answering questions successfully. However, most existing KT models only focus on a set of skills, without considering the skill modes. We propose a KT model, called APGKT, that exploits skill modes. Specifically, we extract the subgraph topology of the skills involved in the question and combine the difficulty level of the skills to obtain the skill modes via encoding; then, through multi-layer recurrent neural networks, we obtain a student's higher-order cognitive states of skills, which is used to predict the student's future answering performance. Experiments on five benchmark datasets validate the effectiveness of the proposed model.
翻译:知识追踪( KT) 是教育数据挖掘的一项基本任务, 重点是学生动态认知技能状态。 学生的问答过程可以被视为一个思考过程, 考虑以下两个问题。 一个问题是需要哪些技能来回答问题, 另一个问题是如何使用这些技能。 如果学生想要正确回答一个问题, 学生不仅应该掌握问题所涉及的一套技能, 而且还应该思考和获取技能图上的关联路径。 关联路径中的节点指的是所需的技能和使用这些技能的路径的顺序。 连接路径被称作技能模式。 因此, 获得技能模式是成功回答问题的关键。 然而, 大多数现有的KT模型只侧重于一套技能, 而没有考虑技能模式。 我们建议一个KT模型, 称为APGKT, 利用技能模式。 具体地说, 我们提取了问题所涉技能的子模型表, 并结合了通过编码获得技能模式的难度; 然后, 通过多层次的反复神经网络, 我们使用这些技能是成功回答问题的关键。 然而, 我们大多数现有的KT模式只侧重于一套技能, 而不考虑技能模式模式。 我们建议一个KT模式, 利用技能模式, 将学生的实验性标准用于对学生的5级数据进行更新。