The COVID-19 pandemic has led to a vast amount of growth for statistical models and methods which characterize features of disease outbreaks. One class of models that came to light in this regard has been the use of self-exciting point processes, wherein infections occur both "at random" and also more systematically from person-to-person transmission. Beyond the modeling of the overall COVID-19 outbreak, the pandemic has also motivated research assessing various policy decisions and event outcomes. One such area of study, addressed here, relates to the formulation of methods which measure the impact that large events or gatherings of people had in the local areas where the events were held. We formulate an alternative approach to traditional causal inference methods and then apply our method to assessing the impact that then President Donald Trump's re-election campaign rallies had on COVID-19 infections in areas where the rallies were hosted. By incorporating several adaptions to nonparametric self-exciting point process models, we estimate both the excess number of COVID-19 infections brought on by the rallies and the duration of time in which these excess infections persisted.


翻译:COVID-19大流行已导致统计模式和方法的巨大增长,这些模式是疾病爆发特点的特点。在这方面,发现的一种模式是使用自我激发的点过程,即感染“随机”和更系统地从人与人之间传染。除了对COVID-19大爆发进行模拟外,该流行病还激发了各种研究,评估各种政策决定和事件结果。这里讨论的这类研究领域之一是制定方法,衡量大型事件或人们集会在事件发生地的当地地区产生的影响。我们制定了传统因果推断方法的替代方法,然后运用我们的方法评估当时的唐纳德·特朗普总统的重新竞选集会在举行集会的地区对COVID-19感染的影响。通过将若干调整纳入非参数性自我激发点进程模型,我们估计了集会带来的COVID-19感染过多的数量和这些超重感染持续的时间。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员