In this paper, we propose SATformer, a novel Transformer-based solution for Boolean satisfiability (SAT) solving. Different from existing learning-based SAT solvers that learn at the problem instance level, SATformer learns the minimum unsatisfiable cores (MUC) of unsatisfiable problem instances, which provide rich information for the causality of such problems. Specifically, we apply a graph neural network (GNN) to obtain the embeddings of the clauses in the conjunctive normal format (CNF). A hierarchical Transformer architecture is applied on the clause embeddings to capture the relationships among clauses, and the self-attention weight is learned to be high when those clauses forming UNSAT cores are attended together, and set to be low otherwise. By doing so, SATformer effectively learns the correlations among clauses for SAT prediction. Experimental results show that SATformer is more powerful than existing end-to-end learning-based SAT solvers.
翻译:在本文中,我们建议 SATew, 这是解决布尔利安相容性(SAT)的新颖的基于变异器的解决方案 。 不同于在问题实例一级学习的现有基于学习的SAT SAT 解答器, SATew 学习不满意问题案例的最小不可满足核心( MUC ), 这为这些问题的因果关系提供了丰富的信息 。 具体地说, 我们应用一个图形神经网络( GNN ), 以获得连接正常格式( CNF) 中条款的嵌入。 在嵌入条款的条款中应用了等级变异结构来捕捉到条款之间的关系, 当构成UNSAT 核心的条款一起被一起使用时, 自我注意的权重会变得很高, 否则会变得很低 。 通过这样做, SATew 有效地学习了SAT 预测条款的关联性。 实验结果显示, SATnread比现有的端到端学习的SAT 解答器更强大 。