Catalyzed by the recent emergence of site-specific, high-fidelity radio frequency (RF) modeling and simulation tools purposed for radar, data-driven formulations of classical methods in radar have rapidly grown in popularity over the past decade. Despite this surge, limited focus has been directed toward the theoretical foundations of these classical methods. In this regard, as part of our ongoing data-driven approach to radar space-time adaptive processing (STAP), we analyze the asymptotic performance guarantees of select subspace separation methods in the context of radar target localization, and augment this analysis through a proposed deep learning framework for target location estimation. In our approach, we generate comprehensive datasets by randomly placing targets of variable strengths in predetermined constrained areas using RFView, a site-specific RF modeling and simulation tool developed by ISL Inc. For each radar return signal from these constrained areas, we generate heatmap tensors in range, azimuth, and elevation of the normalized adaptive matched filter (NAMF) test statistic, and of the output power of a generalized sidelobe canceller (GSC). Using our deep learning framework, we estimate target locations from these heatmap tensors to demonstrate the feasibility of and significant improvements provided by our data-driven approach in matched and mismatched settings.
翻译:近十年来,雷达中古典方法以数据驱动的配方在雷达中迅速受到欢迎。尽管这种激增,但重点仍然有限,以这些古典方法的理论基础为主。在这方面,作为我们目前对雷达空间适应性处理(STAP)采取的数据驱动方法的一部分,我们分析雷达目标本地化背景下某些子空间分离方法的无症状性能保障,并通过拟议的目标位置估计深学习框架来扩大这一分析。在我们的方法中,我们通过随机在预定的受限制区域设置变强目标,即国际空间法研究所开发的基于地点的RFV模型和模拟工具,生成了全面的数据集。对于这些受限制区域的每个雷达返回信号,我们生成了射程中的热马普电压、方位谱和标准适应匹配过滤器升级测试数据,并通过我们的深层学习框架和数据匹配模型,从这些受热驱动的变配定位点展示了我们从这些受热和受热源驱动的变配的系统。