The Gumbel-Softmax is a continuous distribution over the simplex that is often used as a relaxation of discrete distributions. Because it can be readily interpreted and easily reparameterized, it enjoys widespread use. We propose a modular and more flexible family of reparameterizable distributions where Gaussian noise is transformed into a one-hot approximation through an invertible function. This invertible function is composed of a modified softmax and can incorporate diverse transformations that serve different specific purposes. For example, the stick-breaking procedure allows us to extend the reparameterization trick to distributions with countably infinite support, thus enabling the use of our distribution along nonparametric models, or normalizing flows let us increase the flexibility of the distribution. Our construction enjoys theoretical advantages over the Gumbel-Softmax, such as closed form KL, and significantly outperforms it in a variety of experiments. Our code is available at https://github.com/cunningham-lab/igr.
翻译:Gumbel- Softmax 是一个持续分布的简单符号, 通常用作离散分布的松散。 因为它可以很容易地解释, 容易地进行重新校准, 它被广泛使用。 我们提议一个模块化的、 更灵活的组合, 包括可重新校准分布, 使高斯噪音通过一个不可逆的功能转换成一热近似。 这个不可逆的函数由修改的软体轴组成, 并可以包含各种不同的特殊用途的变形。 例如, 棍棒破碎程序允许我们把重新校准的把戏扩展至分布, 并有相当无限的支持, 从而使我们能够使用非对称模型的分布, 或正常化的流让我们增加分布的灵活性。 我们的建筑在理论上优于 Gumbel- Softmax, 例如封闭式 KL, 并在各种实验中大大超越了它。 我们的代码可以在 https://github.com/ cunningham-lab/ igr 上查阅 。