We provide a new theory for nodewise regression when the residuals from a fitted factor model are used to apply our results to the analysis of the maximum Sharpe ratio when the number of assets in a portfolio is larger than its time span. We introduce a new hybrid model where factor models are combined with feasible nodewise regression. Returns are generated from an increasing number of factors plus idiosyncratic components (errors). The precision matrix of the idiosyncratic terms is assumed to be sparse, but the respective covariance matrix can be non-sparse. Since the nodewise regression is not feasible due to the unknown nature of errors, we provide a feasible-residual-based nodewise regression to estimate the precision matrix of errors as a new method. Next, we show that the residual-based nodewise regression provides a consistent estimate for the precision matrix of errors. In another new development, we also show that the precision matrix of returns can be estimated consistently, even with an increasing number of factors. Benefiting from the consistency of the precision matrix estimate of returns, we show that: (1) the portfolios in high dimensions are mean-variance efficient; (2) maximum out-of-sample Sharpe ratio estimator is consistent and the number of assets slows the convergence up to a logarithmic factor; (3) the maximum Sharpe ratio estimator is consistent when the portfolio weights sum to one; and (4) the Sharpe ratio estimators are consistent in global minimum-variance and mean-variance portfolios.
翻译:当使用一个合适要素模型的剩余部分来将我们的结果应用于分析投资组合中资产数量大于其时间跨度时,我们提供了一种新的不偏偏回归理论。我们引入了一种新的混合模型,将要素模型与可行的不偏偏回归结合起来。回归来自越来越多的因素和特殊性构件(errors),特异性术语的精确矩阵假定是稀疏的,但各自的共差率矩阵可能不粗略。由于误差性质未知,不偏差率回归不可行,因此我们提供了一种可行的基于重复的不偏差回归,以估计错误的精确矩阵,作为一种新方法。接下来,我们表明基于残余的不偏差回归为准确的矩阵提供了一致的估计。在另一个新动态中,我们还表明,即使因素越来越多,还能够对回报的精确矩阵进行一致估算。从准确的回报率矩阵估算中得益,我们显示:(1) 高比值的组合以基于累合值为基础的最低值为基础;(3) 最差差值为稳定的全球比例;(3) 最差值为稳定的汇率;和最差值为稳定的汇率。