Inference on the extremal behaviour of spatial aggregates of precipitation is important for quantifying river flood risk. There are two classes of previous approach, with one failing to ensure self-consistency in inference across different regions of aggregation and the other imposing highly restrictive assumptions. To overcome these issues, we propose a model for high-resolution precipitation data, from which we can simulate realistic fields and explore the behaviour of spatial aggregates. Recent developments have seen spatial extensions of the Heffernan and Tawn (2004) model for conditional multivariate extremes, which can handle a wide range of dependence structures. Our contribution is twofold: extensions and improvements of this approach and its model inference for high-dimensional data; and a novel framework for deriving aggregates addressing edge effects and sub-regions without rain. We apply our modelling approach to gridded East-Anglia, UK precipitation data. Return-level curves for spatial aggregates over different regions of various sizes are estimated and shown to fit very well to the data.
翻译:关于降水空间总量极端行为的推论对于量化河流洪水风险十分重要。以前有两种方法,一种方法未能确保不同汇总区域自相一致的推论,另一种方法则强加高度限制性的假设。为了克服这些问题,我们提议了一个高分辨率降水数据模型,从中我们可以模拟现实领域和探索空间总量的行为。最近的事态发展看到赫弗南和陶恩(2004年)模式对有条件的多变模式的空间延伸,可以处理范围广泛的依赖结构。我们的贡献有两个方面:这一方法的扩展和改进及其高维数据的模型推论;以及一个用于生成集料的新型框架,用以应对边缘效应和无雨的次区域。我们将我们的建模方法应用于编成网的东安尼亚、联合王国降水数据。不同区域空间总量的回归水平曲线被估计并显示与数据非常匹配。