Malleable scheduling is a model that captures the possibility of parallelization to expedite the completion of time-critical tasks. A malleable job can be allocated and processed simultaneously on multiple machines, occupying the same time interval on all these machines. We study a general version of this setting, in which the functions determining the joint processing speed of machines for a given job follow different discrete concavity assumptions. As we show, when the processing speeds are fractionally subadditive, the problem of scheduling malleable jobs at minimum makespan can be approximated by a considerably simpler assignment problem. Moreover, we provide efficient approximation algorithms, with a logarithmic approximation factor for the case of submodular processing speeds, and a constant approximation factor when processing speeds are determined by matroid rank functions. Computational experiments indicate that our algorithms outperform the theoretical worst-case guarantees.
翻译:可忽略的时间安排是一个模型,它抓住了平行的可能性,以加快完成时间紧迫的任务。可以同时在多台机器上分配和处理可移动的工作,同时在所有这些机器上使用相同的时间间隔。我们研究了这一环境的通用版本,其中确定某一工作机器联合处理速度的功能遵循不同的离散混凝固假设。正如我们所显示的那样,当处理速度是分数的子相交时,最起码可移动的工作的时间安排问题可以被一个相当简单的分配问题所近似。此外,我们提供了高效的近似算法,为亚式处理速度提供了对数近比值系数,并在处理速度由配制式排位函数决定时提供了一个常数近似系数。计算实验表明,我们的算法比理论上最坏的保证更符合逻辑。