We introduce the following submodular generalization of the Shortest Cycle problem. For a nonnegative monotone submodular cost function $f$ defined on the edges (or the vertices) of an undirected graph $G$, we seek for a cycle $C$ in $G$ of minimum cost $\textsf{OPT}=f(C)$. We give an algorithm that given an $n$-vertex graph $G$, parameter $\varepsilon > 0$, and the function $f$ represented by an oracle, in time $n^{\mathcal{O}(\log 1/\varepsilon)}$ finds a cycle $C$ in $G$ with $f(C)\leq (1+\varepsilon)\cdot \textsf{OPT}$. This is in sharp contrast with the non-approximability of the closely related Monotone Submodular Shortest $(s,t)$-Path problem, which requires exponentially many queries to the oracle for finding an $n^{2/3-\varepsilon}$-approximation [Goel et al., FOCS 2009]. We complement our algorithm with a matching lower bound. We show that for every $\varepsilon > 0$, obtaining a $(1+\varepsilon)$-approximation requires at least $n^{\Omega(\log 1/ \varepsilon)}$ queries to the oracle. When the function $f$ is integer-valued, our algorithm yields that a cycle of cost $\textsf{OPT}$ can be found in time $n^{\mathcal{O}(\log \textsf{OPT})}$. In particular, for $\textsf{OPT}=n^{\mathcal{O}(1)}$ this gives a quasipolynomial-time algorithm computing a cycle of minimum submodular cost. Interestingly, while a quasipolynomial-time algorithm often serves as a good indication that a polynomial time complexity could be achieved, we show a lower bound that $n^{\mathcal{O}(\log n)}$ queries are required even when $\textsf{OPT} = \mathcal{O}(n)$.


翻译:我们引入了以下最短周期问题的亚模块化 {{tmodal cloral plostone 子模块化 。 对于在非方向图形的边缘(或顶端) $美元定义的非负数成本函数 。 我们寻求以最低成本$G$的周期 $$$ 美元, 美元= OPT\ f( C) 美元。 我们给出了一个算法, 以美元/ 垂直图 $, 参数 $\ vareblon > 0美元, 以一个货币表示的函数 $, 美元=m2=O} (log 1/ valice) 美元定义的非负数 美元 。 当我们需要一个更低的货币周期 $\ 美元=\\ 美元( varecial) 时, 这与与不支持最接近的货币 美元 =xx 问题有强烈的对比。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员