This is the paper for the first place winning solution of the Drone vs. Bird Challenge, organized by AVSS 2021. As the usage of drones increases with lowered costs and improved drone technology, drone detection emerges as a vital object detection task. However, detecting distant drones under unfavorable conditions, namely weak contrast, long-range, low visibility, requires effective algorithms. Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data using a Kalman-based object tracker to boost detection confidence. Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance. Moreover, temporal information gathered by object tracking methods can increase performance further.
翻译:这是AVSS 2021组织的 " 无人机对鸟的挑战 " 首选获胜解决方案的论文。 随着无人机的使用随着成本的降低和无人机技术的改进而增加,无人机探测成为一项至关重要的物体探测任务。然而,在不利条件下探测遥远的无人机,即弱对比度、远程、可见度低,需要有效的算法。我们的方法是通过使用基于Kalman的物体追踪器微调YOLOv5模型真实和合成生成的数据来改进无人机探测问题,以提高探测信心。我们的结果表明,用最佳的合成数据组合来增加真实数据可以提高性能。此外,用天体跟踪方法收集的时间信息可以进一步提高性能。