In this paper we address the problem of proving confluence for string diagram rewriting, which was previously shown to be characterised combinatorically as double-pushout rewriting with interfaces (DPOI) on (labelled) hypergraphs. For standard DPO rewriting without interfaces, confluence for terminating rewrite systems is, in general, undecidable. Nevertheless, we show here that confluence for DPOI, and hence string diagram rewriting, is decidable. We apply this result to give effective procedures for deciding local confluence of symmetric monoidal theories with and without Frobenius structure by critical pair analysis. For the latter, we introduce the new notion of path joinability for critical pairs, which enables finitely many joins of a critical pair to be lifted to an arbitrary context in spite of the strong non-local constraints placed on rewriting in a generic symmetric monoidal theory.
翻译:在本文中,我们处理证明字符串图重写的汇合问题,以前曾显示,这种汇合与(贴标签的)高压(贴标签的)高压(DPOI)上的界面(DPOI)重写的双推式重写(DPOI)有双重拼写,对于标准 DPO 重写没有接口,终止重写系统的汇合一般是不可更改的。然而,我们在这里显示,DPOI的汇合,以及因此的字符串图重写,是可以分解的。我们运用这一结果,通过对等关键对口分析,为确定对口法的对称单一理论和无对立结构的对立组合提供了有效的本地组合程序。对于后者,我们引入了关键对口的路径共写性新概念,这使得关键对口组合的有限组合可以被任意拆卸,尽管对重写在通用的对称单潮理论中受到非局部的严格限制。