Automated systems that detect deception in high-stakes situations can enhance societal well-being across medical, social work, and legal domains. Existing models for detecting high-stakes deception in videos have been supervised, but labeled datasets to train models can rarely be collected for most real-world applications. To address this problem, we propose the first multimodal unsupervised transfer learning approach that detects real-world, high-stakes deception in videos without using high-stakes labels. Our subspace-alignment (SA) approach adapts audio-visual representations of deception in lab-controlled low-stakes scenarios to detect deception in real-world, high-stakes situations. Our best unsupervised SA models outperform models without SA, outperform human ability, and perform comparably to a number of existing supervised models. Our research demonstrates the potential for introducing subspace-based transfer learning to model high-stakes deception and other social behaviors in real-world contexts with a scarcity of labeled behavioral data.
翻译:为了解决这一问题,我们提出了第一个在高占用情况下检测欺骗的自动化系统,可以提高医疗、社会工作和法律领域之间的社会福利。现有的检测高占用欺骗的视频模型已经受到监督,但用于培训模型的标签数据集却很少被收集到用于大多数现实世界应用。为了解决这个问题,我们建议采用第一个多式联运的、不受监督的转移学习方法,该方法可以检测真实世界,高占用视频中的欺骗而不使用高占用标签。我们的次空间对接(SA)方法在实验室控制的低占用情景中调整了对欺骗的视听表现,以检测真实世界中、高占用情景中的欺骗。我们最好的未经监督的SA模型优于模型,超越了人类的能力,并比照一些现有的监督模型。我们的研究显示,有可能采用基于子空间的转移学习方法,在现实世界环境中模拟高占用欺骗和其他社会行为,同时缺乏标签的行为数据。