In this work, we explore adversarial attacks on the Variational Autoencoders (VAE). We show how to modify data point to obtain a prescribed latent code (supervised attack) or just get a drastically different code (unsupervised attack). We examine the influence of model modifications ($\beta$-VAE, NVAE) on the robustness of VAEs and suggest metrics to quantify it.
翻译:在这项工作中,我们探索了对变异自动电算器(VAE)的对抗性攻击。我们展示了如何修改数据点以获得一个指定的潜在代码(受监督的攻击)或只是得到一个截然不同的代码(不受监督的攻击 ) 。 我们研究了模型修改(\beta$-VAE, NVAE)对VAE的稳健性的影响,并提出了量化它的标准。