Many real-world optimization problems have multiple interacting components. Each of these can be NP-hard and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.
翻译:许多现实世界优化问题都有多个互动部分。 每一个部分都可能是NP硬的,它们可能相互冲突, 即一个部分的最佳解决方案不一定代表其他部分的最佳解决方案。 这对单一目标的配方来说可能是一个挑战, 在每个部分对整体解决方案质量的各自影响可能因实例而异。 在本文中, 我们研究旅行盗贼问题的双目标配方, 以旅行销售者问题和背包问题为组成部分。 我们提出了一个加权和总和方法, 利用随机化的现有超自然学版本, 在最近的9次竞争中,这在6次中优于参与者, 并为379次单一目标问题案例找到了新的最佳解决方案。