Baker's technique is a powerful tool for designing polynomial-time approximation schemes, in particular for all optimization problems expressible in monotone first-order logic. However, it can only be used in rather restricted graph classes. We show that maximization problems expressible in monotone first-order logic admit PTAS under a much weaker assumption of fractional treewidth-fragility, and QPTAS on all hereditary classes with sublinear separators. Moreover, the same technique gives constant-factor approximation for these problems in any class of graphs of bounded expansion.
翻译:贝克的技术是设计多米时近似方案的有力工具,特别是针对单质一等逻辑中可以表现的所有优化问题。 但是,它只能用于相当有限的图形类别。 我们表明,单质一等逻辑中可以表现的最大化问题在单质一等逻辑中允许PTAS在小树枝脆弱度的假设下,而QPTAS则在所有世系类别中以亚线性分离器进行。 此外,同一技术在任何受约束扩张的图表中都为这些问题提供恒定因素近似值。