Machine learning has been increasingly used as a first line of defense for Windows malware detection. Recent work has however shown that learning-based malware detectors can be evaded by well-crafted, adversarial manipulations of input malware, highlighting the need for tools that can ease and automate the adversarial robustness evaluation of such detectors. To this end, we presentsecml-malware, the first Python library for computing adversarial attacks on Windows malware detectors. secml-malware implements state-of-the-art white-box and black-box attacks on Windows malware classifiers, by leveraging a set of functionality-preserving manipulations that can be applied to Windows programs without corrupting their functionality. The library can be used to assess the adversarial robustness of Windows malware detectors, and it can be easily extended to include novel attack strategies. It is available at https://github.com/zangobot/secml_malware.
翻译:机器学习越来越多地被用作视窗恶意软件检测的第一防线。 但是,最近的工作表明,学习的恶意软件检测器可以通过精心设计的对立操作来规避,这突出表明了需要一些工具来方便和自动化对此类检测器的对抗性稳健性评估。为此,我们展示了ecmml-malware,这是第一个用于计算对视窗恶意软件检测器的对抗性攻击的Python图书馆。ceml-malware对视窗恶意软件分类器实施了最新的白箱和黑盒攻击,通过利用一套功能保护操作,可以应用到视窗程序,而不会损坏其功能。图书馆可用于评估视窗恶意软件检测器的对抗性强健性,并且可以很容易地扩展到包括新式袭击策略。它可以在 https://github.com/zangobot/secml_malware上查阅。