As an emerging secure learning paradigm in leveraging cross-silo private data, vertical federated learning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, the 1) restricted applicable scope to overlapped samples and 2) high system challenge of real-time federated serving have limited its application to advertising systems. In this paper, we advocate new learning setting Semi-VFL (Vertical Semi-Federated Learning) as a lightweight solution to utilize all available data (both the overlapped and non-overlapped data) that is free from federated serving. Semi-VFL is expected to perform better than single-party models and maintain a low inference cost. It's notably important to i) alleviate the absence of the passive party's feature and ii) adapt to the whole sample space to implement a good solution for Semi-VFL. Thus, we propose a carefully designed joint privileged learning framework (JPL) as an efficient implementation of Semi-VFL. Specifically, we build an inference-efficient single-party student model applicable to the whole sample space and meanwhile maintain the advantage of the federated feature extension. Novel feature imitation and ranking consistency restriction methods are proposed to extract cross-party feature correlations and maintain cross-sample-space consistency for both the overlapped and non-overlapped data. We conducted extensive experiments on real-world advertising datasets. The results show that our method achieves the best performance over baseline methods and validate its effectiveness in maintaining cross-view feature correlation.


翻译:作为利用跨筒仓私人数据的新兴安全学习范例,纵向联合学习(VFL)有望通过联合学习广告商和出版商私人拥有的补充用户属性,改善广告模式,但(1) 限制对重叠样本的适用范围,(2) 实时联合服务的系统挑战限制了对广告系统的应用,我们主张将半VFL(Vertical 半联联学习)作为一种新的学习设置,作为一种轻量级解决方案,用以利用所有现有数据(重叠和非重叠数据),而这些数据不需由联合服务提供。SEMVFL预计将比单方模式发挥更好的最佳效果,并保持较低的推论成本。这对(一) 缓解被动方的特性的缺失,以及(二) 适应整个样本空间的适应性空间,为半VFLF(VFL)实施一个良好的解决方案。因此,我们建议精心设计的联合特权学习框架(JPL),作为高效实施Sim-VFLL。 具体地说,我们为适用于整个样本模式的最佳不具有效率的单方学生模型,同时保持整个样本空间数据格式的升级的升级的升级优势。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
专知会员服务
59+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员