Event Detection (ED) aims to identify event trigger words from a given text and classify it into an event type. Most of current methods to ED rely heavily on training instances, and almost ignore the correlation of event types. Hence, they tend to suffer from data scarcity and fail to handle new unseen event types. To address these problems, we formulate ED as a process of event ontology population: linking event instances to pre-defined event types in event ontology, and propose a novel ED framework entitled OntoED with ontology embedding. We enrich event ontology with linkages among event types, and further induce more event-event correlations. Based on the event ontology, OntoED can leverage and propagate correlation knowledge, particularly from data-rich to data-poor event types. Furthermore, OntoED can be applied to new unseen event types, by establishing linkages to existing ones. Experiments indicate that OntoED is more predominant and robust than previous approaches to ED, especially in data-scarce scenarios.


翻译:事件探测 (ED) 旨在从给定文本中识别事件触发词, 并将其分类为事件类型。 大部分当前 ED 方法主要依赖培训实例, 几乎忽略事件类型的关联性 。 因此, 它们往往缺乏数据, 无法处理新的不可见事件类型 。 为了解决这些问题, 我们将 ED 设计成一个事件本体学中的事件类型过程: 将事件实例与事件本体学中预先界定的事件类型联系起来, 并提议一个新的 ED 框架, 题为“ OntoED ”, 并嵌入本体学。 我们丰富事件本体学, 将事件类型联系起来, 并进一步引发更多的事件- 事件关联性 。 基于事件本体学, OntoED 能够利用并传播相关知识, 特别是从数据丰富到数据贫乏事件类型的知识。 此外, OnteED 可以通过建立与现有事件的联系, 应用于新的不可见事件类型。 实验表明, 与 ED 比以往的 ED 方法更加主要和有力。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
5+阅读 · 2019年11月22日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
相关论文
Arxiv
13+阅读 · 2020年10月19日
Arxiv
5+阅读 · 2019年11月22日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员