Aspect-based sentiment analysis (ABSA) has become a prevalent task in recent years. However, the absence of a unified framework in the present ABSA research makes it challenging to compare different models' performance fairly. Therefore, we created an open-source ABSA framework, namely PYABSA. Besides, previous efforts usually neglect the precursor aspect term extraction (ASC) subtask and focus on the aspect sentiment classification (ATE) subtask. Compared to previous works, PYABSA includes the features of aspect term extraction, aspect sentiment classification, and text classification, while multiple ABSA subtasks can be adapted to PYABSA owing to its modular architecture. To facilitate ABSA applications, PYABSAseamless integrates multilingual modelling, automated dataset annotation, etc., which are helpful in deploying ABSA services. In ASC and ATE, PYABSA provides up to 33 and 7 built-in models, respectively, while all the models provide quick training and instant inference. Besides, PYABSA contains 180K+ ABSA instances from 21 augmented ABSA datasets for applications and studies. PyABSA is available at https://github.com/yangheng95/PyABSA


翻译:近年来,基于视觉的情绪分析(ABSA)已成为一项普遍的任务,然而,由于目前ABSA研究缺乏统一的框架,因此难以公平地比较不同模型的性能,因此,我们创建了开放源代码的ABSA框架,即PYABSA;此外,以往的努力通常忽视前体术语提取(ASC)子任务,侧重于情感分类(ATE)子任务。与以往的工程相比,PYABSA包括了方面术语提取、情绪特征分类和文本分类等特征,而多种ABSA子任务由于其模块结构,可以适用于PYABSA。为了便利ABSA应用,PYABSA无线整合了多语制建模、自动数据设置说明等,这有助于部署ABSA服务。在ASC和ATE中,PYABSA提供多达33和7个建构型模型,而所有模型都提供快速培训和即时推断。此外,PYABSA包含21个扩充的ABSA/MASHA数据库的180K+ABA实例,供应用和研究使用。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员