Complementary to the fine-grained channel state information (CSI) from the physical layer and coarse-grained received signal strength indicator (RSSI) measurements, the mid-grained spatial beam attributes (e.g., beam SNR) that are available at millimeter-wave (mmWave) bands during the mandatory beam training phase can be repurposed for Wi-Fi sensing applications. In this paper, we propose a multi-band Wi-Fi fusion method for Wi-Fi sensing that hierarchically fuses the features from both the fine-grained CSI at sub-6 GHz and the mid-grained beam SNR at 60 GHz in a granularity matching framework. The granularity matching is realized by pairing two feature maps from the CSI and beam SNR at different granularity levels and linearly combining all paired feature maps into a fused feature map with learnable weights. To further address the issue of limited labeled training data, we propose an autoencoder-based multi-band Wi-Fi fusion network that can be pre-trained in an unsupervised fashion. Once the autoencoder-based fusion network is pre-trained, we detach the decoders and append multi-task sensing heads to the fused feature map by fine-tuning the fusion block and re-training the multi-task heads from the scratch. The multi-band Wi-Fi fusion framework is thoroughly validated by in-house experimental Wi-Fi sensing datasets spanning three tasks: 1) pose recognition; 2) occupancy sensing; and 3) indoor localization. Comparison to four baseline methods (i.e., CSI-only, beam SNR-only, input fusion, and feature fusion) demonstrates the granularity matching improves the multi-task sensing performance. Quantitative performance is evaluated as a function of the number of labeled training data, latent space dimension, and fine-tuning learning rates.


翻译:在强制光波(mmWave)波段,在强制光波培训阶段,可以对用于Wi-Fi遥感应用的微小频道状态信息(CSI)进行补充。在本文中,我们建议一种用于Wi-Fi感应的多频Wi-Fi聚合方法,该方法在等级上结合了以下两个特点:在 5 GHz 和 30 GHz 的精密 CSI 和 30 GHz 匹配框架中,在 毫米波波波(mmWave) 培训阶段中,可在毫米波波(mmWam-SNRR) 中找到的中层空间波束属性(例如Baam SNR)。 通过对 CSI 和 Bay SNR) 的两张功能进行配对,并将所有配对的地谱图与具有可学习重量的精度的混集功能地图结合起来。为了进一步解决有标签的训练数据的问题,我们建议采用基于自动的多频调基基的基离子-G-Milation 3 方向网络,通过前的S-modal-modremodrealation modrealation oration comdemodigradudeal comdeal demodeal demodududustration laxal laxal laxal lax lax lax lax lax lade lax lax lax lax laxxx 3 lax-mod lax

0
下载
关闭预览

相关内容

Wi-Fi 是 Wi-Fi 联盟制造商的商标可做为产品的品牌认证,是一个创建于 IEEE 802.11 标准的无线局域网络(WLAN)设备。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员