When a human and a humanoid robot collaborate physically, ergonomics is a key factor to consider. Assuming a given humanoid robot, several control architectures exist nowadays to address ergonomic physical human-robot collaboration. This paper takes one step further by considering robot hardware parameters as optimization variables in the problem of collaborative payload lifting. The variables that parametrize robot's kinematics and dynamics ensure their physical consistency, and the human model is considered in the optimization problem. By leveraging the proposed modelling framework, the ergonomy of the interaction is maximized, here given by the agents' energy expenditure. Robot kinematic, dynamics, hardware constraints and human geometries are considered when solving the associated optimization problem. The proposed methodology is used to identify optimum hardware parameters for the design of the ergoCub robot, a humanoid possessing a degree of embodied intelligence for ergonomic interaction with humans. For the optimization problem, the starting point is the iCub humanoid robot. The obtained robot design reaches loads at heights in the range of 0.8-1.5 m with respect to the iCub robot whose range is limited to 0.8-1.2 m. The robot energy expenditure is decreased by about 33%, meanwhile, the human ergonomy is preserved, leading overall to an improved interaction.
翻译:当人类和人造机器人进行物理协作时,人类工程学是需要考虑的一个关键因素。假设给定的人类机器人,目前存在若干控制结构,以解决人类工程物理机器人合作的问题。本文件还进一步将机器人硬件参数视为合作提升有效载荷问题的优化变量。将机器人运动学和动力学的精度化为机器人运动学和动力学能确保其物理一致性的变量在优化问题中加以考虑。通过利用拟议建模框架,互动的机体特征被最大化,由代理商的能源支出提供。在解决相关优化问题时,考虑机器人动力学、动力学、硬件限制和人类地理特征。拟议方法用于确定用于设计ERGoCub机器人的最佳硬件参数,该机器人具有一定的内嵌性智能,与人类的体力学互动。关于优化问题的出发点是iCub人类机器人,获得的机器人设计在0.8-1.5米范围内达到高度。在解决相关优化问题时,将考虑机器人的动力学、动力学、机能限制和人造地理特征。在ICub机器人方面,将改进的能量范围限制为0.8-1.2。