This paper presents algorithms for parallelization of inference in hidden Markov models (HMMs). In particular, we propose parallel backward-forward type of filtering and smoothing algorithm as well as parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements and operators to pose these inference problems as parallel-prefix-sum computations in sum-product and max-product algorithms and parallelize them using parallel-scan algorithms. The advantage of the proposed algorithms is that they are computationally efficient in HMM inference problems with long time horizons. We empirically compare the performance of the proposed methods to classical methods on a highly parallel graphical processing unit (GPU).


翻译:本文介绍了隐藏的Markov 模型中平行推论的算法。 特别是,我们提出了平行的后向过滤和平滑算法,以及平行的Viterbi型最大- a- posteririi(MAP)算法。 我们将这些关联要素和操作者定义为在总和和和最大产品算法中平行的预留和计算,并使用平行扫描算法将它们平行。 提议的算法的优点是,在HMM 推论问题中,这些算法具有计算效率,具有较长的时间跨度。 我们用经验将拟议方法的性能与高度平行的图形处理单元(GPU)的经典方法作比较。

0
下载
关闭预览

相关内容

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 其是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员