Pandemics and natural disasters over the years have changed the behavior of people, which has had a tremendous impact on all life aspects. With the technologies available in each era, governments, organizations, and companies have used these technologies to track, control, and influence the behavior of individuals for a benefit. Nowadays, the use of the Internet of Things (IoT), cloud computing, and artificial intelligence (AI) have made it easier to track and change the behavior of users through changing IoT behavior. This article introduces and discusses the concept of the Internet of Behavior (IoB) and its integration with Explainable AI (XAI) techniques to provide trusted and evident experience in the process of changing IoT behavior to ultimately improving users' behavior. Therefore, a system based on IoB and XAI has been proposed in a use case scenario of electrical power consumption that aims to influence user consuming behavior to reduce power consumption and cost. The scenario results showed a decrease of 522.2 kW of active power when compared to original consumption over a 200-hours period. It also showed a total power cost saving of 95.04 Euro for the same period. Moreover, decreasing the global active power will reduce the power intensity through the positive correlation.


翻译:多年来,大流行病和自然灾害改变了人们的行为,对生活的各个方面都产生了巨大影响。随着每个时代现有的技术,政府、组织和公司利用这些技术来跟踪、控制和影响个人行为,从而受益。如今,使用物联网(IoT)、云计算和人工智能(AI)使得通过改变IoT行为来跟踪和改变用户行为变得更加容易。本文章介绍并讨论了行为行为互联网的概念及其与可解释的AI(XAI)技术的结合,以在改变IoT行为的过程中提供可信和明显的经验,从而最终改善用户的行为。因此,在电力消费的使用情况下,提出了基于IoB和XAI的系统,目的是影响用户消费行为,以减少电力消耗和成本。该假设结果显示,与200小时的原始消费相比,活跃力量减少了522.2千瓦。它还表明,在同一期间,通过积极力量的强度下降,全球动力的强度将减少95.04欧元。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Why we do need Explainable AI for Healthcare
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月29日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员