We describe invariants of centers of ellipse-inscribed triangle families with two vertices fixed to the ellipse boundary and a third one which sweeps it. We prove that: (i) if a triangle center is a fixed affine combination of barycenter and orthocenter, its locus is an ellipse; (ii) and that over the family of said affine combinations, the centers of said loci sweep a line; (iii) over the family of parallel fixed vertices, said loci rigidly translate along a second line. Additionally, we study invariants of the envelope of elliptic loci over combinations of two fixed vertices on the ellipse.
翻译:我们描述的是,以椭圆边界固定的两顶脊柱和排出它的第三个脊椎的椭圆三角家庭中心的变异性。 我们证明:(一) 如果三角中心是百花中心与正极的固定方形组合,其中心就是椭圆;(二) 在上述方圆组合的家庭中,上述地方中心横扫一条线;(三) 在平行固定脊椎的家庭中,据说是沿第二行僵硬地翻转的。此外,我们还研究椭圆上两种固定脊椎组合的极地圆圆包的变异性。