Advanced recommender systems usually involve multiple domains (such as scenarios or categories) for various marketing strategies, and users interact with them to satisfy diverse demands. The goal of multi-domain recommendation (MDR) is to improve the recommendation performance of all domains simultaneously. Conventional graph neural network based methods usually deal with each domain separately, or train a shared model to serve all domains. The former fails to leverage users' cross-domain behaviors, making the behavior sparseness issue a great obstacle. The latter learns shared user representation with respect to all domains, which neglects users' domain-specific preferences. In this paper we propose $\mathsf{H^3Trans}$, a hierarchical hypergraph network based correlative preference transfer framework for MDR, which represents multi-domain user-item interactions into a unified graph to help preference transfer. $\mathsf{H^3Trans}$ incorporates two hyperedge-based modules, namely dynamic item transfer (Hyper-I) and adaptive user aggregation (Hyper-U). Hyper-I extracts correlative information from multi-domain user-item feedbacks for eliminating domain discrepancy of item representations. Hyper-U aggregates users' scattered preferences in multiple domains and further exploits the high-order (not only pair-wise) connections to improve user representations. Experiments on both public and production datasets verify the superiority of $\mathsf{H^3Trans}$ for MDR.


翻译:传统的基于图神经网络的方法通常会单独处理每个领域,或者训练一个共享模型来服务于所有领域。前者无法利用用户的跨领域行为,使得行为稀疏性成为巨大的障碍。后者学习了关于所有领域的共享用户表示,忽略了用户的领域特定偏好。本文提出了一种基于分层超图网络的相关偏好转移框架($\mathsf{H^3Trans}$)用于多领域推荐,将多领域用户-物品交互表示为一个统一的图以帮助偏好转移。$\mathsf{H^3Trans}$ 结合了两个基于超边的模块,即动态项传输(Hyper-I)和自适应用户聚合(Hyper-U)。Hyper-I从多域用户-物品反馈中提取相关信息以消除项表示的域差异。Hyper-U汇集用户在多个领域中分散的偏好,并进一步利用高阶连接(不仅仅是成对的)来改进用户表示。在公共数据集和生产数据集上的实验验证了$\mathsf{H^3Trans}$在多领域推荐中的优越性。

0
下载
关闭预览

相关内容

跨域推荐最新前沿工作进展汇总
机器学习与推荐算法
0+阅读 · 2022年9月29日
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
相关论文
Arxiv
1+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
12+阅读 · 2018年1月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员