In this work, we develop an automated method to generate 3D human walking motion in simulation which is comparable to real-world human motion. At the core, our work leverages the ability of deep reinforcement learning methods to learn high-dimensional motor skills while being robust to variations in the environment dynamics. Our approach iterates between policy learning and parameter identification to match the real-world bio-mechanical human data. We present a thorough evaluation of the kinematics, kinetics and ground reaction forces generated by our learned virtual human agent. We also show that the method generalizes well across human-subjects with different kinematic structure and gait-characteristics.
翻译:在这项工作中,我们开发了一种自动方法,在模拟中产生3D人行走运动,这与现实世界的人类运动相当。在核心方面,我们的工作利用了深强化学习方法的能力,既学习高维运动技能,同时又能适应环境动态的变化。我们的方法在政策学习和参数识别之间相互交叉,以便与现实世界的生物机械人类数据相匹配。我们对我们所学的虚拟人体代理人产生的动能学、动能和地面反应力量进行了透彻的评估。我们还表明,该方法非常概括了不同运动结构和行为特征的人类学科。