This work gives a Lie operator derivation of various Boris solvers via a detailed study of first and second-order trajectory errors in a constant magnetic field. These errors in the gyro-circle center and gyro-radius are the foundational basis for why Boris solvers existed, independent of any finite-difference schemes. The elimination of these errors then forces the second-order solver's trajectory to be exactly on the gyro-circle. By revisiting some historical calculations, it is found that many publications do not distinguish the poorly behaved first-order leap-frog solver with the correct second-order Boris algorithm. This work shows that this second-order Boris solver is much more accurate then previously thought and that its trajectory remains close to the exact orbit in a combined $nonuniform$ electric and magnetic field at time-steps greater than the cyclotron period.
翻译:这项工作通过详细研究常态磁场的一阶和二阶轨误差,得出了鲍里斯各解答器的“ 谎言” 运算符。 这些在陀螺- 环球中心和陀螺- 射线中出现的误差是鲍里斯解答器存在的基础, 独立于任何有限差异计划。 消除这些误差后, 第二阶解答器的轨迹就会完全在陀螺- 圆圈上。 通过重新审视一些历史计算, 发现许多出版物并没有区分行为不良的一阶跳蛙解答器和正确的二阶鲍里斯算法。 这项工作表明, 这个二阶鲍里斯解答器比先前想象的要准确得多, 其轨迹仍然接近精确轨道, 在比环球周期大的时间级加起来的不统一美元电磁场中。