In the article ''On the (Non) NP-Hardness of Computing Circuit Complexity'', Murray and Williams imply the PARTITION decision problem is not known to be NP-hard via $2^{n^{o(1)}}$-size AC0 reductions. In this note, we show PARTITION is NP-hard via first-order projections. Basically, we slightly modify well-known reductions from 3SAT to SUBSET-SUM and from SUBSET-SUM to PARTITION, but do so in the context of descriptive computational complexity, i.e., we use first-order logical formulas to define them. Hardness under polynomial-size AC0 reductions follows because first-order reductions are a particular type of them. Thus, this note fills a gap in the literature.
翻译:在《论计算电路复杂度的(非)NP难度》一文中,Murray和Williams暗示PARTITION判定问题尚未被证明能通过$2^{n^{o(1)}}$规模AC0归约具有NP难度。本注记证明PARTITION问题可通过一阶投影归约具有NP难度。本质上,我们略微修改了从3SAT到SUBSET-SUM以及从SUBSET-SUM到PARTITION的经典归约,但将其置于描述计算复杂度的框架中实现——即使用一阶逻辑公式来定义这些归约。由于一阶归约是多项式规模AC0归约的特例,其NP难度随之得证。因此,本注记填补了文献中的空白。