The short-term prediction of precipitation is critical in many areas of life. Recently, a large body of work was devoted to forecasting radar reflectivity images. The radar images are available only in areas with ground weather radars. Thus, we aim to predict high-resolution precipitation from lower-resolution satellite radiance images. A neural network called WeatherFusionNet is employed to predict severe rain up to eight hours in advance. WeatherFusionNet is a U-Net architecture that fuses three different ways to process the satellite data; predicting future satellite frames, extracting rain information from the current frames, and using the input sequence directly. Using the presented method, we achieved 1st place in the NeurIPS 2022 Weather4Cast Core challenge. The code and trained parameters are available at \url{https://github.com/Datalab-FIT-CTU/weather4cast-2022}.
翻译:对降水的短期预测在许多生活领域至关重要。最近,大量工作致力于预报雷达反射图像,雷达图像只在有地面气象雷达的地区提供。因此,我们的目标是从低分辨率卫星弧度图像中预测高分辨率降水量。一个称为气象FusionNet的神经网络用来预测长达8小时的严重降雨量。气象FusionNet是一个U-Net结构,它将处理卫星数据的三种不同方式结合起来;预测未来卫星框架,从当前框架提取雨水信息,并直接使用输入序列。我们使用介绍的方法,在NeurIPS 2022天气4Cast核心挑战中达到了第1位。代码和经过培训的参数可在以下网站查阅:https://github.com/Datalab-FIT-CTU/wea4cast-2022}。