Annotating images with pixel-wise labels is a time-consuming and costly process. Recently, DatasetGAN showcased a promising alternative - to synthesize a large labeled dataset via a generative adversarial network (GAN) by exploiting a small set of manually labeled, GAN-generated images. Here, we scale DatasetGAN to ImageNet scale of class diversity. We take image samples from the class-conditional generative model BigGAN trained on ImageNet, and manually annotate 5 images per class, for all 1k classes. By training an effective feature segmentation architecture on top of BigGAN, we turn BigGAN into a labeled dataset generator. We further show that VQGAN can similarly serve as a dataset generator, leveraging the already annotated data. We create a new ImageNet benchmark by labeling an additional set of 8k real images and evaluate segmentation performance in a variety of settings. Through an extensive ablation study we show big gains in leveraging a large generated dataset to train different supervised and self-supervised backbone models on pixel-wise tasks. Furthermore, we demonstrate that using our synthesized datasets for pre-training leads to improvements over standard ImageNet pre-training on several downstream datasets, such as PASCAL-VOC, MS-COCO, Cityscapes and chest X-ray, as well as tasks (detection, segmentation). Our benchmark will be made public and maintain a leaderboard for this challenging task. Project Page: https://nv-tlabs.github.io/big-datasetgan/
翻译:使用像素标签的图像注释是一个耗时且昂贵的过程。 最近, DatasetGAN 展示了一个充满希望的替代方法 — 通过基因对抗网络( GAN), 利用一组手工标签的、 GAN 生成的图像来合成一个大标签数据集。 在此, 我们将DatasetGAN 缩放到类多样性的图像网络规模中。 我们从通过图像网络培训的等级- 条件型基因模型BigGAN 采集图像样本, 并手动为所有1k 类课程进行5个图像注释。 通过在 BigGAN 顶部培训一个有效的功能分割结构, 我们将 BigGAN 转换成一个标签化的数据集生成器。 我们进一步显示, VQQGAN 也可以以类似的方式作为数据集的生成器, 利用已经附加说明的数据生成的图像网络, 并评估各种环境的分层。 我们通过广泛的缩放研究, 在利用大型生成的数据集来培训 pixel- CO 任务上的不同监管和自我监督的骨干模型。 此外, 我们用我们的标准任务 将数据转换到 IM- trainal- trainal- train, 我们的数据转换到 Cre- train- trainal- train- trainal- traination 。