Information exchange over networks can be affected by various forms of delay. This causes challenges for using the network by a multi-agent system to solve a distributed optimisation problem. Distributed optimisation schemes, however, typically do not assume network models that are representative for real-world communication networks, since communication links are most of the time abstracted as lossless. Our objective is therefore to formulate a representative network model and provide practically verifiable network conditions that ensure convergence of distributed algorithms in the presence of interference and possibly unbounded delay. Our network is modelled by a sequence of directed-graphs, where to each network link we associate a process for the instantaneous signal-to-interference-plus-noise ratio. We then formulate practical conditions that can be verified locally and show that the age of information (AoI) associated with data communicated over the network is in $\mathcal{O}(\sqrt{n})$. Under these conditions we show that a penalty-based gradient descent algorithm can be used to solve a rich class of stochastic, constrained, distributed optimisation problems. The strength of our result lies in the bridge between practical verifiable network conditions and an abstract optimisation theory. We illustrate numerically that our algorithm converges in an extreme scenario where the average AoI diverges.


翻译:网络上的信息交流可能会受到各种形式的延误的影响。 这给使用多试剂系统网络解决分布式优化问题带来了挑战。 但是, 分布式优化计划通常不假定具有真实世界通信网络代表性的网络模式, 因为通信连接大部分时间是抽象的, 并且是无损的。 因此, 我们的目标是开发一个具有代表性的网络模式, 并提供可实际核查的网络条件, 以确保分布式算法在出现干扰和可能无限制的延迟的情况下趋于一致。 我们的网络由一系列指示图谱来模拟, 在每个网络链接中, 我们把一个即时信号- 干涉- 附加- 噪音比率的过程联系起来。 我们然后制定可以在当地验证的实用条件, 并表明与网络上传输的数据相关的信息( AoI) 的年龄是 $\ macal{O} (\\ qrt{n} $ 。 在这样的条件下, 我们显示基于惩罚的梯度下降算法可以用来解决一大批的随机、 制约、 分配优化问题。 我们的结果的强度存在于一个可核实的极差的模型中。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Parallel Tempering on Optimized Paths
Arxiv
0+阅读 · 2021年6月25日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关VIP内容
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员