Diabetic retinopathy (DR) is a severe complication of diabetes that can cause permanent blindness. Timely diagnosis and treatment of DR are critical to avoid total loss of vision. Manual diagnosis is time consuming and error-prone. In this paper, we propose a novel deep learning based method for automatic screening of retinal fundus images to detect and classify DR based on the severity. The method uses a dual-path configuration of deep neural networks to achieve the objective. In the first step, a modified UNet++ based retinal vessel segmentation is used to create a fundus image that emphasises elements like haemorrhages, cotton wool spots, and exudates that are vital to identify the DR stages. Subsequently, two convolutional neural networks (CNN) classifiers take the original image and the newly created fundus image respectively as inputs and identify the severity of DR on a scale of 0 to 4. These two scores are then passed through a shallow neural network classifier (ANN) to predict the final DR stage. The public datasets STARE, DRIVE, CHASE DB1, and APTOS are used for training and evaluation. Our method achieves an accuracy of 94.80% and Quadratic Weighted Kappa (QWK) score of 0.9254, and outperform many state-of-the-art methods.


翻译:糖尿病视网膜病(DR)是一种严重的糖尿病并发症,可导致永久性失明。及时诊断和治疗DR对于避免视力完全丧失至关重要。人工诊断耗时且容易出错。在本文中,我们提出一种新的深层次学习方法,用于根据严重程度自动筛选视网膜基金图像,以检测DR并进行分类。该方法使用深神经网络的双向配置,以实现这一目标。第一步,使用基于视网膜的修改 Uet++基于视网膜的分解法来创建基金图象,强调出血、棉花羊毛斑点和对确定DR阶段至关重要的振动元素。随后,两个共振动神经网络(CNN)将原始图像和新创建的Fundus图像分别作为投入,并确定DR在0至4级规模上的强度。这两个分数随后通过一个浅线网分解器(ANN)来预测DR阶段的最后阶段。公共数据集、DIVE、CHASE DB1、CHASED-DB1和ExudateQ4 和APTO 80 Q的精确度方法,用于对RE-QQ 和RVAL-Q-Q-Q-Q-RO-Q-Q-Q-Q-Q-Q-RA的高级方法的快速评估。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
26+阅读 · 2021年8月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
已删除
将门创投
9+阅读 · 2017年7月28日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
26+阅读 · 2021年8月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员